基于PBPK-TO模型预测CYP3A4调节剂对卡博替尼PK/PD的影响

江晓泉,汪国鹏,刘憬曈,潘福璐,森慕黎,杨文宁,刘洋,王中健

中国药学杂志 ›› 2022, Vol. 57 ›› Issue (16) : 1358-1366.

PDF(1889 KB)
PDF(1889 KB)
中国药学杂志 ›› 2022, Vol. 57 ›› Issue (16) : 1358-1366. DOI: 10.11669/cpj.2022.16.007
论著

基于PBPK-TO模型预测CYP3A4调节剂对卡博替尼PK/PD的影响

  • 江晓泉1,汪国鹏2,刘憬曈1,潘福璐1,森慕黎1,杨文宁1,刘洋1*,王中健3*
作者信息 +

Effect of CYP3A4 Regulors on the PK/PD of Cabozantinib Based on the PBPK-TO Model

  • JIANG Xiao-quan1, WANG Guo-peng2, LIU Jing-tong1, PAN Fu-lu1, SEN Mu-li1, YANG Wen-ning1,LIU Yang1*, WANG Zhong-jian3*
Author information +
文章历史 +

摘要

目的 建立卡博替尼的生理药动学及其主要靶点的靶点占有率联用(PBPK-TO)模型,并预测CYP3A4的调节剂(抑制剂和诱导剂)对其PK/PD的影响。方法 通过运用公式和收集参数,建立卡博替尼的PBPK模型,利用文献实测值进行验证,并联合主要靶点的结合、解离速率常数(konkoff)搭建成PBPK-TO模型;通过结合CYP3A4竞争型抑制剂酮康唑、时间依赖抑制剂地拉韦啶和诱导剂利福平的PBPK模型,研究其对卡博替尼的PK/PD的影响。结果 成功建立了卡博替尼PBPK-TO模型;联合用药时,酮康唑、地拉韦啶和利福平对卡博替尼最大血药浓度(cmax)和激酶靶点的最大靶点占有率(TOmax)均无显著性影响;酮康唑能使卡博替尼血浆药物浓度-时间曲线下面积(AUC0-t)增加34%,3个主要靶点的靶点占有率大于60%的持续时间(DTO>60%)均增加30%以上;地拉韦啶能使卡博替尼AUC0-t增加16%,3个主要靶点的DTO >60%均增加20%以上;利福平能使卡博替尼AUC和靶点的DTO >60%减少70%以上。此外,也研究了联合用药时临床合理的剂量调整方案,当单独使用卡博替尼60 mg作为治疗剂量时,与酮康唑联用剂量需要降低至40 mg;与地拉韦啶联用,不需要调整剂量;与利福平联用时,剂量需要增加到80 mg。结论 建立的PBPK-TO模型能较好地预测CYP3A4抑制剂、诱导剂对卡博替尼PK/PD的影响,为药物相互作用模型研究和临床使用剂量调整提供新思路。

Abstract

OBJECTIVE To establish a PBPK-TO model by combining physiologically based pharmacokinetics of cabozantinib with occupancy ratio of its main targets, and to predict the effects of CYP3A4 inhibitors and inducers on its PK/PD. METHODS The PBPK model of cabozantinib was established by formulas and collected parameters, and verified by measured values from literatures. Then the model was developed into a PBPK-TO model with the combination of kon and koff. The PBPK model of CYP3A4 competitive inhibitor ketoconazole, time-dependent inhibitor delavirdine and inducer rifampicin were taken together with cabozantinibs′ to study their effect on the PK and PD of cabozantinib. RESULTS The PBPK-TO model of cabozantinib was established successfully. When used in combination, ketoconazole, delavirdine and rifampin had no significant effect on the cmax of cabozantinib and TOmax of kinase targets; ketoconazole increased the AUC0-t of cabozantinib by 34%, and DTO >60% of three main targets by more than 30%. Delavirdine increased the AUC of cabozantinib by 16%, and DTO >60% of three main targets by more than 20%. Rifampicin reduced the AUC of cabozantinib and DTO >60% of targets by more than 70%. In addition, the dosing regimens were also determined when co-administered with CYP3A4 inhibitors and inducer. For single administration of 60 mg cabozantinib, dosing needed be adjusted to 40 mg with ketoconazole, no needed to be adjusted with delavirdine, and needed to be increased to 80 mg with rifampicin. CONCLUSION The established PBPK-TO model can predict the effect of CYP3A4 inhibitors and inducers on the PK/PD of cabozantinib successfully, and provide new ideas for drug-drug interaction model research and clinical dose justment.

关键词

卡博替尼 / 靶点占有率 / PBPK-TO模型 / 药物相互作用 / 蛋白激酶抑制剂

Key words

cabozantinib / target occupancy / PBPK-TO model / drug-drug interaction / protein kinase inhibitor

引用本文

导出引用
江晓泉,汪国鹏,刘憬曈,潘福璐,森慕黎,杨文宁,刘洋,王中健. 基于PBPK-TO模型预测CYP3A4调节剂对卡博替尼PK/PD的影响[J]. 中国药学杂志, 2022, 57(16): 1358-1366 https://doi.org/10.11669/cpj.2022.16.007
JIANG Xiao-quan, WANG Guo-peng, LIU Jing-tong, PAN Fu-lu, SEN Mu-li, YANG Wen-ning,LIU Yang, WANG Zhong-jian. Effect of CYP3A4 Regulors on the PK/PD of Cabozantinib Based on the PBPK-TO Model[J]. Chinese Pharmaceutical Journal, 2022, 57(16): 1358-1366 https://doi.org/10.11669/cpj.2022.16.007
中图分类号: R969.2   

参考文献

[1] NOBLE M, ENDICOTT J A, JOHNSON L N. Protein kinase inhibitors: insights into drug design from structure[J]. Science, 2004, 303(5665):1800-1805.
[2] Cabozantinib instruction.Cabometyx(cabozantinib) tablets, for oral use initial U.S. approval[EB/OL].(2016-04)[2021-08-17].https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/208692s000lbl.pdf.
[3] NGUYEN H M, BROWN L G, GROSS T S, et al. Abstract 849: Cabozantinib(XL184) inhibits growth of prostate cancer in the bone and results in an altered bone environment[J]. Cancer Res, 2012, 72(Suppl 8):849.
[4] LACY S, HSU B, MILES D, et al. Metabolism and disposition of cabozantinib in healthy male volunteers and pharmacologic characterization of its major metabolites[J]. Drug Metab Dispos, 2015, 43(8): 1190-1207.
[5] FDA. Clinical drug interaction studies—cytochrome P450 enzyme- and transporter-mediated drug interactions guidance for industry [EB/OL].(2020-01)[2021-08-17].https://www.fda.gov/media/134581/download.
[6] QIAN C Q, ZHAO K J, CHEN Y, et al. Simultaneously predict pharmacokinetic interaction of rifampicin with oral versus intravenous substrates of cytochrome P450 3A/P-glycoprotein to healthy human using a semi-physiologically based pharmacokinetic model involving both enzyme and transporter turnover[J]. Eur J Pharm Sci, 2019, 134: 194-204.
[7] PETERS S A. Physiologically based pharmacokinetic(PBPK) modeling and simulations(principles, methods, and applications in the pharmaceutical industry)[M]. London: Wiley, 2012: 161-181.
[8] Gastro Plus Manual-9.7. Simulation software for drug discovery and development[EB/OL]. (2021-02)[2021-08-01] https://www.simulations-plus.com.
[9] LI G F, WANG K, CHEN R, et al. Simulation of the pharmacokinetics of bisoprolol in healthy adults and patients with impaired renal function using whole-body physiologically based pharmacokinetic modeling[J]. Acta Pharmacol Sin(中国药理学报), 2012, 33(11): 1359-1371.
[10] FU Q, SUN X X, LUSTBURG M B, et al. Predicting paclitaxel disposition in humans with whole-body physiologically-based pharmacokinetic modeling[J]. CPT Pharmacometrics Syst Pharmacol, 2019, 8(12): 931-939.
[11] BANEYX G, PARROTT N, MEILLE C, et al. Physiologically based pharmacokinetic modeling of CYP3A4 induction by rifampicin in human: influence of time between substrate and inducer administration[J]. Eur J Pharm Sci,2014, 56: 1-15.
[12] WITTE W D, DANHOF M, VAN D, et al. In vivo target residence time and kinetic selectivity: the association rate constant as determinant[J]. Trends Pharmacol Sci, 2016, 37(10): 831-842.
[13] Cabometyxproduct monograph including patinet medication information[EB/OL][2021-08-01]. https://pdf.hres.ca/dpd_pm/00053517.PDF
[14] LANNI F, BURTON N, HARRIS D, et al. The potential of microdialysis to estimate rifampicin concentrations in the lung of guinea pigs[J]. PLoS One, 2021, 16(1): e0245922.Doi: 10.1371/journal.pone.0245922.
[15] ZHOU R, MOENCH P, HERAN C, et al. pH-dependent dissolution in vitro and absorption in vivo of weakly basic drugs: development of a canine model[J]. Pharm Res, 2005, 22(2):188-192.
[16] MOTIEI M, GOUVEIA L, OPIK T, et al. Nanoparticle-based rifampicin delivery system development[J].Molecules, 2021, 26(7): 2067. Doi: 10.3390/molecules26072067.
[17] BELLMANN R. Clinical pharmacokinetics of systemically administered antimycotics[J]. Curr Clin Pharmacol, 2007, 2(1): 37-58.
[18] USACH I, MELIS V, PERIS J E. Non-nucleoside reverse transcriptase inhibitors: a review on pharmacokinetics, pharmacodynamics, safety and tolerability[J]. J Int Aids Soc, 2013, 16(1):1-14.
[19] LANNI F, BURTON N, HARRIS D, et al. The potential of microdialysis to estimate rifampicin concentrations in the lung of guinea pigs[J].PLoS One, 2021, 16(1): e0245922. Doi: 10.1371/journal.pone.0245922.
[20] UCHIMURA T, KATO M, SAITO T, et al. Prediction of human blood-to-plasma drug concentration ratio[J]. Biopharm Drug Dispos, 2010, 31(5-6):286-297.
[21] MATTHEW D, BRENNAN B, ZOMORODI K, et al. Disposition of azole antifungal agents. I. Nonlinearities in ketoconazole clearance and binding in rat liver[J]. Pharm Res, 1993, 10(3):418-422.
[22] RODGERS T, LEAHY D, ROWLAND M. Physiologically based pharmacokinetic modeling 1: predicting the tissue distribution of moderate-to-strong bases[J]. J Pharm Sci, 2005, 94(6): 1259-1276.
[23] RODGERS T, ROWLAND M. Physiologically based pharmacokinetic modelling 2: Predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions[J].J Pharm Sci,2006, 95(6): 1238-1257.
[24] LIN Q M, LI Y H, LU X R, et al. Characterization of genetic variation in CYP3A4 on the metabolism of cabozantinib in vitro[J]. Chem Res Toxicol, 2019, 32(8): 1583-1590.
[25] VOORMAN R L, MAIO S M, HAUER M J, et al. Metabolism of delavirdine, a human immunodeficiency virus type-1 reverse transcriptase inhibitor, by microsomal cytochrome P450 in humans, rats, and other species: probable involvement of CYP2D6 and CYP3A.[J]. Drug Metab Dispos, 1998, 26(7):631-639.
[26] CHEN Y, LIU L L, NGUYEN K, et al. Utility of intersystem extrapolation factors in early reaction phenotyping and the quantitative extrapolation of human liver microsomal intrinsic clearance using recombinant cytochromes P450[J]. Drug Metab Dispos, 2011, 39(3): 373-382.
[27] MORSE G D, FISCHL M A, SHELTON M J, et al. Single-dose pharmacokinetics of delavirdine mesylate and didanosine in patients with human immunodeficiency virus infection[J]. Antimicrob Agents Chemother, 1997, 41(1):169-174.
[28] GEORGI V, SCHIELE F, BERGER B T, et al. Binding kinetics survey of the drugged kinome[J]. J Am Chem Soc, 2018,140(46):15774-15782.
[29] NIWA T, SHIRAGA T, TAKAGI A. Drug-drug interaction of antifungal drugs[J]. Yakugaku Zasshi, 2005, 125(10): 795-805.
[30] BERRY L M, ZHAO Z Y. An examination of IC50 and IC50-shift experiments in assessing time-dependent inhibition of CYP3A4, CYP2D6 and CYP2C9 in human liver microsomes[J]. Drug Metab Lett, 2008, 2(1): 51-59.
[31] NGUYEN L, NATACHA B, XIE Y L,et al. Pharmacokinetics of cabozantinib tablet and capsule formulations in healthy adults [J]. Anticancer Drugs, 2016, 27(7): 669-678.
[32] DANESHMEND T K, WARNOCK D W. Clinical pharmacokinetics of ketoconazole [J]. Clin Pharmacokinet, 1988, 14(1):13-34.
[33] HANKE N, FRECHEN S, MOJ D, et al. PBPK models for CYP3A4 and P-gp DDI prediction: amodeling network of Rifampicin, itraconazole, clarithromycin, midazolam, alfentanil, and digoxin [J]. CPT Pharmacometrics Syst Pharmacol, 2018, 7(10): 647-659.
[34] CENTER FOR DRUG EVALUTION, NMPA. Technical guidelines for drug interaction research(trial) [EB/OL](2020-09-11)[2021-08-17]. https://ww.cde.org.cn/main/news/viewInfoCommon/5a15b727e605482c1c594c689bb994b.
[35] WANG X W, HE Q F, XIANG X Q, et al. Physiologically-based pharmacokinetic modeling for predictingdrug-drug interactions induced by acid-reducing agents [J].Acta Pharm Sin (药学学报), 2021, 56(8): 2197-2203.
[36] JI Y H. Research on target occupancy model based on drug-target binding kinetics of intestinal target [D].Beijing: Beijing University of Chinese Medcine,2020.
PDF(1889 KB)

Accesses

Citation

Detail

段落导航
相关文章

/